Journal of Organometallic Chemistry, 67 (1974) 141–152 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

π -CYCLOPENTADIENYLS OF NICKEL(II)

XIII. THE PREPARATION AND PROPERTIES OF THE COMPOUNDS π -C₅H₅NiPBu₃SC(S)X (X = OR, R AND NRH) AND π -C₅H₅NiPBu₃-SC(O)NRH

FUMIE SATO, KEN NAKAMURA and MASAO SATO

Department of Chemical Engineering, Tokyo Institute of Technology, Meguro, Tokyo (Japan)

(Received July 20th, 1973)

Summary

Compounds of the type π -C₅H₅NiPBu₃SC(S)X (X=R, OR and NRH) are obtained from reactions between $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl^{\odot} and SC(S)X⁻ in aqueous solution. Compounds such as π -C₅H₅NiPBu₃SC(S)NRH are also obtained by reactions of π -C₅H₅NiPBu₃SH with RNCS.

Reactions of C_6H_5NCS with π - $C_5H_5NiPBu_3SEt$ or $[\pi$ - $C_5H_5NiPBu_3S-(CH_2)_n]_2$ (n = 1, 2 and 3) give π - $C_5H_5NiPBu_3[SC(NC_6H_5)SC_2H_5]$ or $[\pi$ - $C_5H_5NiPBu_3\{SC(NC_6H_5)S(CH_2)_n\}]_2$ respectively.

Similar reactions of π -C₅H₅NiPBu₃SH and RNCO give π -C₅H₅NiPBu₃SC-(O)NRH.

Treatment of π -C₅H₅NiPBu₃SC(S)R with HCl gives π -C₅H₅NiSC(S)R.

Introduction

Recently we have investigated the preparation and reactivity of compounds of the type π -C₅H₅NiPBu₃X [1] (X = anion). It has been shown that π -C₅H₅NiPBu₃SR compounds readily undergo carbon disulphide insertion to produce the stable compounds π -C₅H₅NiPBu₃SC(S)SR [1d], and that π -C₅H₅-NiPBu₃SC₂H₅ also undergoes phenyl isothiocyanate insertion to give π -C₅H₅-NiPBu₃[SC(NC₆H₅)SC₂H₅] [1e]. The preparation of compounds of the type π -C₅H₅NiSC(S)R has been also reported in a preliminary communication [1f]. As there have been few reports on organonickel compounds [4] containing an M-SC(S)X linkage, in contrast to the other transition metals [2], we describe below the preparation and reactivity of compounds of the type π -C₅H₅-NiPBu₃SC(S)X (X = R, OR and NRH) and give details of the results which have been reported in preliminary communications [1e,f].

Compounds of the type π -C₅H₅NiPBu₃SC(S)X (X = R, OR and NRH)

were obtained from reactions between $[\pi-C_5H_5Ni(PBu_3)_2]^+Cl^-$ and $[SC(S)-X]^-$ in aqueous solution; this is a generally accepted route for preparation of compounds of the type π -C₅H₅NiPBu₃X (X = anion) [1].

The compounds π -C₅H₅NiPBu₃SC(S)NRH were also obtained from reactions of π -C₅H₅NiPBu₃SH with RNCS.

Results and discussion

Reactions of $[\pi - C_5 H_5 Ni(PBu_3)_2]^+ Cl^-$ with $SC(S)X^-$ (X = R, OR and NRH) When excess NaSC(S)CH₂C₆H₅ was added to an aqueous solution of

 $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻, a brown precipitate appeared; recrystallization of the precipitate gave brown crystals in almost quantitative yield, based on nickel.

The IR spectrum of these crystals showed characteristic absorption bands at 1595 [ν (C=C) aromatic], 1205 [ν (C=S)] and 795 cm⁻¹ [γ (C₅H₅)]. NMR peaks appeared at τ 2.6–3.2 (aromatic 5H), 4.93(π -C₅H₅, S 5H), 5.82(CH₂– Ph, s, 2H) and 8.3–9.6 ppm (PBu₃, 27H). These results, together with the analytical and reactivity data described later, indicate that the product is π -C₅H₅NiPBu₃SC(S)CH₂C₆H₅ with structure (Ia) (eqn. 1).

$$[\pi - C_5 H_5 Ni (PBu_3)_2]^+ Cl^- + NaSCCH_2 C_6 H_5 \rightarrow \pi - C_5 H_5 Ni PBu_3 SCCH_2 C_6 H_5$$
(Ia)
(1)

Similar treatment of other NaSC(S)R compounds ($R = C_2H_5$ and C_6H_5) with $[\pi - C_5H_5Ni(PBu_3)_2]^+Cl^-$ gave brown oily products (Ib,c). These could not be isolated because of their instability, but IR spectra and reactivity data, shown later, indicate that they are $\pi - C_5H_5NiPBu_3SC(S)R$.

NaSC(S)OCH₃ reacted readily with $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ in aqueous solution to give the expected π -C₅H₅NiPBu₃SC(S)OCH₃ (IIa) as brown crystals in 88% yield (eqn. 2).

$$\begin{bmatrix}\pi - C_5 H_5 \operatorname{Ni}(\operatorname{PBu}_3)_2 \end{bmatrix}^+ \operatorname{Cl}^- + \operatorname{NaSCOCH}_3 \to \pi - C_5 H_5 \operatorname{NiPBu}_3 \operatorname{SCOCH}_3 \qquad (2)$$
(IIa)

Structure (IIa) could be assigned by elemental analysis and spectral data. The IR spectrum of (IIa) showed a series of bands (1195, 1145 and 1060 cm⁻¹) which originate from the structure R—O—C=S and a strong out-of-plane deformation band of π -cyclopentadienyl at 795 cm⁻¹ in the IR spectrum as well as signals at $\tau 4.92(\pi - C_5 H_5, s, 5H)$, 6.18(O—CH₃, s, 3H) and 8.40—9.50(PBu₃, 27H) in the NMR spectrum.

Analogous treatment of other compounds of the type NaSC(S)OR (R = C_2H_5 , i- C_3H_7 and CH_2 =CHCH₂) with $[\pi$ - $C_5H_5Ni(PBu_3)_2$]⁺Cl⁻⁻gave the corresponding π - $C_5H_5NiPBu_3SC(S)OR$ (IIb--d).

 π -C₅H₅NiPBu₃SC(S)NHCH₃ (IIIa) was obtained from reaction between $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ and [SC(S)NHCH₃]⁻ in aqueous solution in 87% yield (eqn. 3).

$$\begin{bmatrix} \pi - C_5 H_5 \operatorname{Ni}(\operatorname{PBu}_3)_2 \end{bmatrix}^+ \operatorname{Cl}^- + \begin{bmatrix} S & S \\ \parallel \\ -\operatorname{CNHCH}_3 \end{bmatrix}^- \to \pi - C_5 H_5 \operatorname{NiPBu}_3 \operatorname{SCNHCH}_3 \qquad (3)$$
(IIIa)

The elemental analysis and spectral data support the structure (IIIa). The IR spectrum of (IIIa) shows characteristic bands for the N–C=S group (1485, 1315 and 928 cm⁻¹) and ν (NH) at 3330 cm⁻¹; the NMR spectrum shows signals at τ 1.89(NH, br, 1H), 5.06 (π -C₅H₅, s, 5H), 7.03 [N–CH₃, d, *J*-(H–CH₃) 5Hz, 3H] and 8.20–9.30 (PBu₃, 27H). By similar treatment of other [SC(S)NHR]⁻ (R = C₂H₅, n-C₃H₇. CH₂=CHCH₂, cyclo-C₆H₁₁ and C₆H₅) with [π -C₅H₅Ni(PBu₃)₂]⁺Cl⁻, the corresponding substances π -C₅H₅NiPBu₃-SC(S)NHR (III b–f) were obtained in excellent yield.

Surprisingly the reactions of $[SC(S)NRR']^-$ (R = C₆H₅ and R' = CH₃ or C₂H₅, and R = R' = CH₃ or C₂H₅) with $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ gave Ni[SC-(S)NRR'₂ [2a] as main products and none of the expected products π -C₅H₅-NiPBu₃SC(S)NRR', but it is not clear why such differences exist between the reactivities of $[SC(S)NRH]^-$ and $[SC(S)NRR']^-$.

The properties and elemental analysis data of the compunds (I), (II) and (III) are given in Table 1, and in Table 2 the IR and NMR data are listed.

Reactions of π -C₅H₅NiPBu₃SH with RNCS

The well known result that RNCS rects with mercaptan (R'SH) or NaSH to give the dithiocarbamate ester R'SC(S)NRH or NaSC(S)NHR, respectively [3] encouraged us to investigate the reaction of π -C₅H₅NiPBu₃SH with RNCS because we have already found that phenylacetylene inserts into the SH bond of π -C₅H₅NiPBu₃SH [1b].

Adding, at room temperature, excess phenyl isothiocyanate to a hexane solution of π -C₅H₅NiPBu₃SH gave brown crystals in quantitative yield. The melting point, IR spectrum and NMR spectrum of these crystals are coincident with those of (IIIf) (eqn. 4). Similarly, the compounds π -C₅H₅NiPBu₃SC(S)-NHR (R = CH₃, C₂H₅, CH₂=CHCH₂ and cyclo-C₆H₁₁) (IIIa,b,d,e) were obtained in excellent yields from the reaction between π -C₅H₅NiPBu₃SH and RNCS.

$$\pi - C_5 H_5 \text{NiPBu}_3 \text{SH} + C_6 H_5 \text{NCS} \rightarrow \pi - C_5 H_5 \text{NiPBu}_3 \text{SCNHC}_6 H_5$$
(4)
(IIIf)

Reactions of π -C₅H₅NiPBu₃SH with RNCO

As it is also known that RNCO react with R'SH or NaSH to give R'SC(O)-NHR or NaSC(O)NHR, respectively [3], we investigated the reaction of π -C₅-H₅NiPBu₃SH with RNCO. Similarly to the reactions with C₆H₅NCS, π -C₅H₅-NiPBu₃SH reacted readily with C₆H₅NCO at room temperature to give the expected π -C₅H₅NiPBu₃SC(O)NHC₆H₅ (IVd) as brown crystals in 87% yield

$$\pi - C_5 H_5 NiPBu_3 SH + C_6 H_5 NCO \rightarrow \pi - C_5 H_5 NiPBu_3 SCNHC_6 H_5$$
(5)
(IVd)

(Continued on p. 146)

TABLE 1							
SOME PHYSICA	L CONSTANTS AND	ANALYTICAL DAT	A FOR THE COMPC	(III) (II) (I) SUNDS	(IIV) GNA		
Compound	Colour	M.p. (°C)	Yield (%)	Analyses found (cal	cd.) (%)		Mol, wt, ^a found
				C	Н	z	(calcd.)
(Ia)	Brown	73.6-74.0	90	60,57 /60 00/	8.17		
(IIa)	Brown	87.b88.0	88	62.70	8,14		
(qII)	Brown	113.5-114.5	. 88	(62.69) 53.14	(8.09) 8.29		
(Ile)	Brown	95.0-96.0	85	(53.73) 53.98	(8.28) 8.45		
(pII)	Brown	104.6—105.6	82	(54.70) 54.38 (54.94)	(8.47) 7,99 (8.07)		
(IIIa)	Brown	102	87	51.63	8,43	3.09	
(IIIb)	Brown	108—109	91	(52.81) 53.01	(8.34) 8.28	(3.24) 3.02	
(IIIc)	Brown	95,5-96,0	82	(53.85) 53.82	(8,53) 8.79	(3.14) 2.88	
(PIII)	Brown	120121	68	(54.82) 54.14	(8.70) 8.39	(3.05) 2.89	
(IIIe)	Brown	88.5-89.5	11	(55.06) 56.74	(8.30) 8.96	(3.06) 2.80	
(111f)	Brown	105	85	(67.63) 67.64 (68.34)	(8.81) 7.78 (7.70)	(2.80) 2.84 (2.84)	
(VIIa)	Brown	92-03	66 b	53,65	4.25		268
(AIIb)	Purple	oil	28 c	(D3.61) 42.06	(4.21) 4.18		(182)
(VIIc)	Black	100.5-101.5	61 c	(41.92) 50.87 (51.99)	(4.37) 3.57 (3.61)		243 (277)
d Cryoscopy in be	enzene, ^b Based on (Ia). ^c Based on [<i>m</i> -C ₅ H	Is NI(PBu ₃)2] [†] Cl [*] ,				

TABLE (¹ H NMR	2 AND IR DA	TA FOR COM	(I) SUNDS (I)	(III) ANA (II),					
Com-	¹ H NMR da	ta ^a (7 ppm)			IR data ^b (cr	n ⁻¹)			
	π-C ₅ H ₅	PBu3	HN	Other	$\gamma(\pi-C_{S}H_{S})$	ν(R-0-C=S)	ν(N−C=S)	µ(NH)	Other
(Ia)	4,93(s) ^c	8.3-9.6		5.82(s) (CH ₂) 2.6–3.2 (C ₆ H ₂)	795				1595 d 1205 e
(IIa)	4,92(s)	8.4-9.5		6.18(s) (O-CH ₃)	795	1195,1145,			
(qII)	4.92(s)	8.4-9.4 [[5.71(q), (O-CH ₂) [8 68/10] (O-CH ₂)	795	1180, 1118,			
(IIc)	4,98(s)	8.4~9.3 /		(4.67(h) (0-CH) (4.67(h) (0-CH) (4.67(h) (0-CH)	795	1040 1195, 1100,			
(IId)	4.92(s)	8.49.3		$(5.26(br, d) (0-CH_2))$		1030			
				(4.53-4.90 (0-C-C=CH ₂) 4.05(m) (0-C-CH≈)	190	1160, 1150, 1050			
(IIIa)	5.06(s)	8.2-9,3	1.89(br)	7.03(d) [N-CH ₃ , J(NH-CH ₃), 5 Hz)	790		1485, 1315,	3330	
(वाग)	5,13(s)	8.3- <u>9</u> .4 /	2.01(br)	$\left(\frac{4.57(p)}{(N-CH_2)}\right)$	061		928 1470, 1305, 060	3300	
				8.80(t) f (N-C-CH ₃)		-		0000	
(IIIc)					58		1480, 1330, 945	9260	
(IIId)	5.08(s)	8.3-9.4	2. 00(br)	5.96(m) (N-CH ₂) 4.65-4.95 (N-C-C=CH ₂) 4.15(m) (N-C-C=CH ₂)	785		1450, 8, 8	3280	
(IIIe)					792		1470, 1330, 930	3300	
(iIIf)	4.92(s)	8.2-9.3	-0.25(br)	$\left\{ \begin{array}{l} 2.1-2.4\\ 2.6-3.1 \end{array} (N-C_6H_5) \end{array} \right.$	ta		1505, <i>f</i> ', 960 1490	3230	

^a Messured in CS₂. ^b KBr. ^c s, Singlet; d, doublet; t, triplet; q, quartet; p, pentuplet; h, heptuplet; m, multiplet; br, broad, ^d v(C=C) aromatic. ^e v(C=S). ^f Overlapped.

(eqn. 5). Structure (IVd) could be assigned by elemental analysis and spectral data; (IVd) showed intense absorption bands at 1630 [ν (C=O) amide I band] and 3350 cm⁻¹ [ν (N-H)] in the IR spectrum, and at τ 2.30 (NH, s, 1H), 2.60-3.40 (C₆H₅, 5H), 4.80 (π -C₅H₅, s, 5H) and 8.30-9.45 ppm (PBu₃, 27H) in the NMR spectrum.

Similarly the compounds π -C₅H₅NiPBu₃SC(O)NHR (R = CH₃, C₂H₅ and cyclo-C₆H₁₁) (IVa-c) were obtained from reaction between π -C₅H₅NiPBu₃-SH and RNCO.

The properties and elemental analysis data of compounds (IV) are given in Table 3, and in Table 4 are listed the IR and NMR data.

Reactions of π -C₅H₅NiPBu₃SR with C₆H₅NCS [1e]

It has been shown that π -C₅H₅NiPBu₃SC₂H₅(Va) reacts with C₆H₅NCS to give π -C₅H₅NiPBu₃[SC(NPh)SC₂H₅] (VIa) and that the product reversibly dissociates to the reactants in solution, as in eqn. (6) [1e].

$$\pi - C_5 H_5 \operatorname{NiPBu}_3 \operatorname{SC}_2 H_5 + C_6 H_5 \operatorname{NCS} \xleftarrow{\text{solvent}} \pi - C_5 H_5 \operatorname{NiPBu}_3 [\operatorname{SC}(\operatorname{NPh}) \operatorname{SC}_2 H_5] (6)$$
(Va)
(Via)

The dithiol dianion bridged nickel compound π -C₅H₅NiPBu₃S(CH₂)₂-SPBu₃Ni- π -C₅H₅, (Vb) [1c], similarly undergoes C₆H₅NCS insertion readily at room temperature, producing the compound π -C₅H₅NiPBu₃[SC(NPh)S-(CH₂)₂ SC(NPh)S]PBu₃Ni- π -C₅H₅ (VIb). The elemental analysis and IR spectrum support the structure (VIb) and the IR spectrum of the solid (VIb) resembles closely that of the solid (VIa). The NMR spectrum of (VIb) in C₆D₆ shows four peaks, which are assigned to π -C₅H₅ protons at τ 4.71, 4.73, 4.79 and 4.81 ppm, and four peaks which are assigned to methylene protons of S⁻⁻CH₂--CH₂--S at τ 5.28 [s, due to (VIb)], 6.35(m), 7.35(m) and 7.51 ppm [s, (Vb)]. These NMR results indicate that (VIb) is dissociated in C₆D₆ according to the eqn. (7).

$$(\pi - C_{5} H_{5} NiPBu_{3} SCH_{2})_{2} + 2C_{6} H_{5} NCS$$
(Vb)
$$\Rightarrow \pi - C_{5} H_{5} NiPBu_{3} S - C - SCH_{2} CH_{2} SNiPBu_{3} - \pi - C_{5} H_{5} + C_{6} H_{5} NCS$$

$$N$$

$$C_{6} H_{5}$$
(7)

 $\approx \pi - C_5 H_5 \text{NiPBu}_3 [\text{SC}(\text{NPh})\text{S}(\text{CH}_2)_2 \text{SC}(\text{NPh})\text{S}] PBu_3 \text{Ni} - \pi - C_5 H_5$

(VЉ)

Similarly, $(\pi-C_5H_5NiPBu_3SCH_2CH_2)_2$ and $(\pi-C_5H_5NiPBu_3SCH_2CH_2-CH_2)_2$ undergo C_6H_5NCS insertion reactions and give the products $(\pi-C_5H_5-NiPBu_3SC(NC_6H_5)SCH_2CH_2]_2$, (VIc) and $(\pi-C_5H_5NiPBu_3SC(NC_6H_5)SCH_2-CH_2CH_2]_2$, (VId) respectively. The properties and elemental analytical data of compounds (VI) are given in Table 5, and Table 6 are listed the IR and NMR data.

Reactions of π -C₅H₅NiPBu₃SC(S)R (I) with HCl [1f] We could obtain the stable compounds π -C₅H₅NiSC(S)CH₂C₆H₅ (VIIa)

Compound	M.p.	Yield	Analyses for	und (caled.) (%)	-	
	(°C)	(%)	C	н	N	S
(IVa)	72.5-73	86	54.85	9.17	3.33	
(IVЪ)	61—62	88	55.63	8.65	2.96	
(IVc)	62.5-63	91	(55.65) 58.65 (59.54)	(0.04) 9.22 (9.10)	(3.26) 2.78 (2.89)	
(IVd)	102-104	87	60.03 (60.29)	8.15 (7.95)	2.96 (2.93)	6.59 (6.69)

TABLE 3				
SOME PHYSICAL	CONSTANTS AND	ANALYTICAL D	ATA FOR CO	MPOUNDS (IV) ^a

^aAll compounds are brown in colour.

from reaction between π -C₅H₅NiPBu₃SC(S)CH₂C₆H₅(Ia) and HCl, and the compounds π -C₅H₅NiSC(S)R (VIIb,c) (R = C₂H₅ and C₆H₅) were also obtained by similar treatment of (Ib,c), (which, as mentioned before, could not be isolated) with HCl. These results obviously indicate the existence of compounds (Ib,c).

It is interesting that the compounds (VII) are stable while the isostructural compounds π -C₅H₅NiSC(S)SR [4] are known to be unstable, and that in contrast to these results the compounds π -C₅H₅NiPBu₃SC(S)SR [1d] (R = C₂-H₅) are unstable.

The properties and elemental analysis data of the compounds (VII) are collected in Table 1. NMR data of (VII) have been given previously [1f].

Spectral data

It is well known that the C=S vibration is susceptible to coupling effects. Rao et al. [5] described the three characteristic bands in the ranges 1573– 1395, 1420–1260 and 1140–940 cm⁻¹ as NCS bands I, II and III for the compounds containing an N–C=S group. The dithiocarbamate nickel compounds (III) show three characteristic bands (Table 2) which fit well the assignment by Rao et al. but compounds (VI) show a strong band at about 1530 cm⁻¹, assigned to ν (C=N) [6] (Table 6), and no other bands characteristic of the N–C=S group.

Dialkyl xanthates, dixanthogens and heavy metal xanthates show a series of bands in the ranges 1250–1200, 1140–1110 and 1070–1020 cm⁻¹ which originate in the structure R-O-C=S [7]. Compounds (II) show three bands near to these ranges (Table 2).

There is reasonably good agreement that the $\nu(C=S)$ band lies between 1225 and 1190 cm⁻¹ in dithioesters [8] and therefore the absorption at 1205 cm⁻¹ of (Ia) and 1150 cm⁻¹ of (VIIa) is identified with $\nu(C=S)$, though (VIIa) shows another strong absorption at 995 cm⁻¹. Thiocarbamates of the type RSCONHR' (R' = alkyl or aryl) are known to show $\nu(C=O)$ in the ranges 1690–1695 and 1699–1662 cm⁻¹, respectively. Surprisingly, compounds (IV) absorb at lower frequencies (1610–1630 cm⁻¹, Table 4). These lower frequency shifts are probably caused either by the heavy atom effect or by the superior electron-donating properties of the π -C₅H₅ NiPBu₃ moiety.

TABLE 4 ¹ H NMR AND IR	DATA FOR CO	(VI) SQUNDS					
Compound	¹ H NMR data	a [r(ppm)]			IR data ^b (cm ⁻	-1)	
	π-C ₅ H ₅	PBu3	HN	Other	$\gamma(\pi - C_S H_S)$	(HN)/t	ν(C=O)
(IVa)	4.88(s)	8,3-9.6	4.67(br)	7.48(d) (N-CH ₃ , J(NH-CH ₃)6Hz	6	3420	1610
(IVb)	4,86(s)	8,2-9,60	4.31(br)	7.05(p) (N-CH ₂)	4	3380	1615
(IVc)					792	3400	1615
(IVd)	4.80(s)	8,3-9,5	2,30(br)	2,63,4(NC ₆ H ₅)	7	3350	1630
	h			وللمراقبة والمراقبة			

^aMeasured in CS₂. ^bKBr. ^cOverlapped.

Compound	M.p.	Yield	Analyses fou	und (caled.) (%)		
	(°C)	(%)	c	н	N	
(VIa)	70.5-71.5	98	59.25	7.98	2.71	
(VIb)	98— 9 9	97	59.56	7.83	2.81	
(VIc)	98.599.5	98	60.66 (59.88)	7.99	2.64	
(VId)	98.599.0	98	59.65 (60.56)	8.13 (8.04)	2.47 (2.62)	

 TABLE 5

 SOME PHYSICAL CONSTANTS AND ANALYTICAL DATA FOR COMPOUNDS (VI)^a

^aAll compounds are brown in colour.

Experimental

 $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ and π -C₅H₅NiPBu₃SH were prepared as previously described [1a]. The anions of SC(S)NRR', SC(S)OR and SC(S)R were prepared by the method described in the literature [3].

IR spectra were recorded on a JASCO—IR—G spectrometer. Proton NMR spectra were recorded on a JEOL—JNM—4H 100 NMR spectrometer with TMS as the internal standard. Some typical procedures are shown below, while the data are summarized in Tables 1—6.

Reaction of $[\pi - C_5 H_5 Ni(PBu_3)_2]^+ Cl^-$ with SC(S)CH₂Ph⁻

When an aqueous solution of NaSC(S)CH₂Ph (10mmoles) was added to an aqueous solution of $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ (3 mmoles), at room temperature, a brown precipitate immediately appeared. This was extracted with ether, and the ether solution was dried over anhydrous calcium chloride. The ether was removed under vacuum to leave a brown residue. Recrystallization from n-hexane gave 1.42 g (96% yield) of (Ia).

Reaction of $[\pi - C_5 H_5 Ni(PBu_3)_2]^+ Cl^-$ with SC(S)OCH₃

When an aqueous solution of NaSC(S)OCH₃ (10 mmoles) was added to an aqueous solution of $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ (3 mmoles), at room temperature, a brown precipitate appeared immediately. This was extracted with benzene, and the benzene solution was dried over anhydrous calcium chloride. The solution was evaporated in vacuo and the residue was recrystallized from a benzene/n-hexane mixture to give 1.14 g (88% yield) of (IIa).

Reaction of $[\pi - C_5 H_5 Ni(PBu_3)_2]^+ Cl^-$ with SC(S)NHC₆H₅

An aqueous solution of NH_4 [SC(S)NHC₆H₅] (10 mmoles) was added to an aqueous solution of $[\pi-C_5H_5Ni(PBu_3)_2]^+Cl^-$ (3 mmoles), at room temperature, and a brown precipitate appeared immediately. This was extracted with benzene, and the benzene solution was dried over anhydrous calcium chloride. The solution was evaporated in vacuo and the residue was recrystallized from a benzene/n-hexane mixture to give 1.26 g (85% yield) of (IIIf).

TABLE 6 ¹ H NMR AND IR I	ATA FOR COM	(IV) SQUNDS (VI)					
Compound	¹ H NMR data ^a				والمتعادية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية	IR data (cm ⁻¹)	9
	π-C ₅ H ₅	C ₆ H ₅	PBu ₃	S-CH ₂	Other	ν(C≂N)	γ(π-C ₅ H ₅)
(Vla)	4,82(s)	2.6-3.5	8.2-9.4c	6.86(q) 7.88(a) ^d	^d (s-с-сн ₃)	1530	800
(VIb)	4.71(s) 4.73(s)d 4.79(s)	2.53.5	8,09,4	5,28(s) 6,36(m) 7,36(m)		1520	800
(Vic)	4.81(s) 4.74(s) 4.77/s/d	2.6-3.5	8,3-9.5	6.70(m) 6.70(m)	8.00(m)(S-C-CH ₂)	1626	795
(bld)	4.77(s) ^d 4.78(s)	2,6-3,5	8.0-9.4 ^c	6.80(br) 6.85(br) 7.85(br) ^d	°[SC(CH ₂) ₂]	1525	793
	here						

^aMeasured in $C_6 D_6$. ^bKBr. ^cOverlapped. ^dAssigned to complex (V).

Reaction of $[\pi - C_5 H_5 Ni(PBu_3)_2]^+ Cl^-$ with NaSC(S)N(CH₃)₂

An aqueous solution of Na[SC(S)N(CH₃)₂] (10 mmoles) was added to an aqueous solution of $[\pi$ -C₅H₅-Ni(PBu₃)₂)]⁺Cl⁻ (3 mmoles) at room temperature and a green precipitate appeared immediately. While drying this precipitate, which was filtered in vacuo at room temperature, the colour of the precipitate changed from green to purple. The purple product was very unstable and it changes easily to green product Ni[SC(S)N(CH₃)₂] [2a] in 86% yield. (Found: C,23.51; H,3.81; N,8.92. C₆H₁₂N₂NiS₄ calcd.: C,24.08; H,4.01; N,9.36%.)

Reaction of π -C₅H₅NiPBu₃SH with C₆H₅NCS

After standing a few hours at room temperature, a mixture of n-hexane solution of π -C₅H₅NiPBu₃SH (2 mmoles) and excess C₆H₅NCS (20 mmoles) gave reddish brown crystals. These were filtered off and recrystallized from a benzene/n-hexane mixture to give 0.91 g (92% yield) of (IIIf).

Reaction of π -C₅H₅NiPBu₃SH with C₆H₅NCO

A benzene solution of π -C₅H₅NiPBu₃SH (2 mmoles) and C₆H₅NCO (20 mmoles) was set aside for about 8h at room temperature and the solution was evaporated in vacuo. Chromatography, on silica gel, of the resulting residue with 50% ether/n-hexane as eluant gave material which was recrystallized from ether/n-hexane to give 0.82 g (87% yield) of (IVd).

Reaction of π -C₅H₅PBu₃NiS(CH₂)₂SNiPBu₃\pi-C₅H₅ with C₆H₅NCS

After standing a few hours at room temperature, a mixture of n-pentane solution of π -C₅H₅PBu₃NiS(CH₂)₂SNiPBu₃ π -C₅H₅ (1 mmole) and excess C₆H₅NCS (10 mmoles) gave reddish brown crystals. These were filtered off and recrystallized from a benzene/n-hexane mixture to give 0.98 g (98% yield) of (VIb).

Preparation of π -C₅H₅NiSC(S)C₆H₅

When an aqueous solution of $NaSC(S)C_6H_5$ (10 mmoles) was added to an aqueous solution of $[\pi - C_5H_5Ni(PBu_3)_2]^+Cl^-$ (3 mmoles), at room temperature, a brown oily product appeared immediately. This was extracted with 50 ml ether and to this ether solution an 18% HCl aqueous solution (50 ml) was added.

The colour of the ether solution changed from brown to green after vigorous stirring of the two layers. After 15 minutes of stirring the green ether layer was separated and washed twice with 50 ml water, then the solution was evaporated in vacuo. Chromatography, on silica gel, of the resulting residue with ether/n-hexane as the eluant gave material which was recrystallized from n-hexane to give 0.5 g (61% yield) of VIIc).

References

 ⁽a) M. Sato, F. Sato and T. Yoshida, J. Organometal. Chem., 31 (1971) 415; (b) M. Sato, F. Sato, N. Takemoto and K. Iida, J. Organometal. Chem., 34 (1972) 205; (c) F. Sato, T. Yoshida and M. Sato, J. Organometal. Chem., 37 (1972) 381; (d) F. Sato, K. Iida and M. Sato, J. Organometal. Chem., 37 (1972) 381; (d) F. Sato, K. Iida and M. Sato, J. Organometal. Chem., 39 (1972) 197; (e) F. Sato and M. Sato, J. Organometal. Chem., 46 (1972) C63; (f) F. Sato and M. Sato, J. Organometal. Chem., 50 (1973) C49.

- 2 (a) F.A. Cotton and J.A. McCleverty, Inorg. Chem., 3 (1964) 1398; (b) R. Bruce and G.R. Knox, J. Organometal. Chem., 6 (1966) 67; (c) J.A. McCleverty, T.A. James and E.J. Wharton, Inorg. Chem., 8 (1969) 1340; (d) T.A. James and J.A. McCleverty, J. Chem. Soc. A, (1970) 3308; (e) J.A. McCleverty and D.G. Orchard, J. Chem. Soc. A, (1970) 3315; (f) R.S.P. Coutts, P.C. Wailes and J.V. Kingston, Aust. J. Chem., 23 (1970) 463, 469; (g) D. Commercuc, I. Douek and G. Wilkinson, J. Chem. Soc. A, (1970) 1771; (h) V.G. Albano, P.L. Bellon and G. Ciani, J. Organometal. Chem., 31 (1971) 75; (i) E.W. Abel and M.O. Dunster, J. Chem. Soc. Dalton, (1973) 98.
- 3 E.E. Reid, Organic Chemistry of Bivalent Sulfur, Chemical Publishing Co., New York, Vol. IV, 1962.
- 4 P. Bladon, R. Bruce and G.R. Knox, Chem. Commun., (1965) 557.
- 5 C.N.R. Rao and R. Venkataraghavan, Spectrochim. Acta, 18 (1962) 541.
- 6 M.F. Lappert and A.R. Sanger, J. Chem. Soc. A, (1971) 1314.
- 7 (a) F.G. Pearson and R.B. Stasiak, Applied Spectroscopy, 12 (1958) 116; (b) L.H. Little, G.W. Poling and J. Leja, Can. J. Chem., 39 (1961) 745; (c) M.L. Shankaranarayana and C.C. Patel, Can. J. Chem., 39 (1961) 1633.
- 8 (a) B. Bak, L. Hansen-Nygaard and C. Pedersen, Acta Chem. Scand., 12 (1958) 1451; (b) L.J. Bellamy and P.E. Rogasch, J. Chem. Soc., (1960) 2218.
- 9 R.A. Nyguist and W.J. Potts, Spectrochim. Acta, 17 (1961) 679.